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Abstract— This paper in if fact an overview of state of the 

art in mobile multi-robot systems as an initial part of our 

research in implementing a system based on swarm robotics 

concepts to be used in natural disaster search and rescue 

missions. The system is to be composed of a group of drones 

that can detect survivor mobile cell signals and exhibit some 

other features as well. This paper surveys the swarm robotics 

research landscape to provide a theoretical background to the 

implementation and help determine the techniques available to 

create the system. The Particle swarm optimization (PSO) and 

Glowworm swarm optimization (GSO) algorithms are briefly 

described and there is also insight into Bird flocking behavior 

and the model behind it. 

 

Keywords—navigation, search and rescue, swarm 

intelligence, swarm robotics 

I. INTRODUCTION 

HE fascinating world of robotics sits at the 

confluence of many disciplines, borrowing ideas 

from many of them to tackle problems in new ways 

Tarca [1], Tarca [2]. Often the aim is to find a more 

natural solution, perhaps one that has already been put in 

practice by biological systems or other systems. 

Such is the case with our project - SURFINDER (PN-

III-P2-2.1-BG-2016-0296). Its goal is to implement a 

system of drones that are helpful in assisting rescue 

operations by providing victim (survivor) search and 

localization, GSM ad-hoc network establishment for 

communication availability and relief of standard 

networks (whose bandwidth may be negatively affected 

when such events occur and could lead to downtime, thus 

creating, even more, difficulties) as well as other 

services, which will be incorporated into the design of 

the robots at a later stage in the development of the 

project. While some aspects regarding the flight stability 

and propeller’s thrust were already investigated 

Kuantama, Craciun, I. Tarca, R. Tarca [3] and Kuantama, 

R. Tarca [4], the aim of this paper is to approach the 

problem of field scanning and target localization by 

means of swarm robotics techniques, which in theory 

allows for systems of many similar agents to perform 

intelligent behaviour, in this case, to accomplish the tasks 

it is meant to do. 

As a first step in the project's design, we set out to 

grasp a general idea of the published theory and research 

in this area, which will help in determining what 

techniques are available for us to implement in our 

system. This paper continues to outline state of the art in 

mobile multi-robot systems that constitutes an initial part 

of our research, as well as ideas on how we might use our 

findings for certain parts of the project. 

II. THEORETICAL ASPECTS 

First of all, it is important to note the classification of 

multi-robot systems into the swarm and non-swarm 

types. The important distinction between them lies in 

homogeneity and features of the individuals: swarm 

systems are comprised of homogeneous agents who all 

have the same set of features (usually primitives in action 

space) that may be too simple to generate meaningful 

output on their own, but as a group can accomplish 

objectives and demonstrate intelligent behaviour. 

Conversely, non-swarm systems are comprised of 

heterogeneous agents, which exhibit different features 

and have well-determined roles in the system. Each agent 

accomplishes part of the objective; however, it is 

specialized for it and cannot take on other roles (or could 

hardly do so). 

Swarm systems due to their nature also give an 

economic advantage since robots can be easily replaced. 

This makes them more fault-tolerant and adapted to 

hazardous environments. Because all the robots are the 

same, others can fill in the gap when one agent 

malfunctions. Because individual robots are simple and 

have basic features, they are cheap to be built, and mass 

production is, therefore, more feasible. 

In contrast, non-swarm systems feature a smaller 

number of robots which are more complex and can be 

different. If one agent has a failure, it may be impossible 

for others to take its place and the system cannot 

complete its mission until the defunct robot is repaired or 

replaced with a similar one. Because they are more 

complex, it also means the robots are harder to be 

produced and more expensive.  

This is an important factor to consider when designing 

and building a robot system. If a particular set of 

objectives can be accomplished by a swarm-like system, 

then an implementation is more likely to be possible, as a 

proof of concept or otherwise working, production 

system. 

Concerning this classification, the SURFINDER 

project can be considered a hybrid swarm-like system. 

Structurally, the individuals will be similar, like in a 

swarm system. This will allow swarm techniques to be 
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applied if the drones are abstracted into cells. 

The field of robotics benefits from research in other 

related areas that are of interest. One such area is 

Distributed Artificial Intelligence. This field sees 

advances in two major topics: distributed problem 

solving (DPS) and Multi-agent systems (MAS). 

Research in DPS is focused on solving a particular 

problem using multiple agents. These agents cooperate 

by independently solving subtasks and periodically 

exchanging partial solutions. 

In DPS it is assumed that agents are willing to 

cooperate. On the other hand, MAS is concerned with the 

collective behavior of heterogeneous groups in which 

individuals may have different goals. The research in 

DPS builds frameworks for cooperative behavior among 

willing individuals, instead of frameworks that try to 

make potentially incompatible individuals converge 

towards a target. 

In cooperative robotics, there is a lot of inspiration 

from biological systems, especially in swarm systems. 

The studied, known behavior of eusocial insects such as 

ants or bees stand as striking evidence that systems 

composed of simple agents can achieve complex goals in 

the real world. It is often presumed that these insects 

have very limited cognitive abilities and complex 

behavior emerges from individual interactions. 

Therefore, instead of thinking about robots as rational 

entities, some researchers used a bottom-up approach in 

which agents are similar to ants: they abide by simple 

rules and are highly reactive. 

Swarm robotics makes use of many algorithms from 

the field of Swarm Intelligence (SI). There are a great 

number of variations on some classical techniques used 

in this field. Search algorithms that are typical and form 

the basis for many others are Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO) 

and Glowworm swarm optimization (GSO). As the name 

suggests, these are all inspired by natural biological 

systems and demonstrate a particular technique in 

reaching specific goals. 

According to Tan, Zang [5], one of the most widely 

used algorithms in SI is Particle Swarm Optimization, 

inspired by the flocking behavior of birds. The purpose 

of the algorithm is finding an optimum in a 

multidimensional hypervolume Brownlee [6]. Similar to 

genetic algorithms, the system is seeded with a random 

population of solutions. Unlike genetic algorithms, each 

possible solution is also assigned a velocity and these 

solutions – called particles – move through hyperspace. 

As described in Eberhart, Kennedy [7], each particle 

retains its best solution so far, together with the value, 

called Pbest. The system also retains the best position 

found by any of the particles, Gbest. The optimization 

concept consists of changing each particle's speed every 

moment of time, towards Pbest and Gbest. The 

acceleration is weighted with a random factor, being 

generated random numbers for Pbest and Gbest. 

Swarm intelligence algorithms present scalability, 

flexibility and robustness and can be used in real 

applications, alongside other techniques. These 

algorithms also have drawbacks, such as many random 

moves, a lot of global interaction and tendency to get 

trapped in a local optimum. 

Massive global interaction can pose a technological 

disadvantage of the techniques, since this usually relies 

on broadcast communication which is less efficient and 

possibly expensive, because of the hardware required to 

handle it. 

Search algorithms in swarm robotics are used in 

multiple ways: parameter optimization and modeling 

individual behavior are two examples. 

In the first type of applications, search algorithms are 

used to optimize the parameters of other methods – 

especially in cases where they are hard to optimize, for 

example in neural networks or heuristic schemes. 

Examples of research effort in this direction include 

the work of Pugh, Martinoli [8]. They developed an 

adaptive strategy to localize multiple targets. The search 

algorithm is inspired by bacteria behavior, and its 

parameters are optimized using PSO.  

An improved version of PSO was used as the 

foundation of a path planning algorithm by Yang, Li [9]. 

The concept is based on cubic splines, which are the 

center of the path and planning is then equivalent to 

optimization of these cubic splines. 

The second way in which swarm intelligence 

algorithms are used in robotics involves modeling 

individual behavior. Algorithms of this type model each 

robot as a particle (agent) and the search environment as 

fitness values. These values are used by the swarm to 

search the target. 

Pugh and Martinoli studied how PSO algorithms can 

be applied directly in swarm robotics searching 

problems. They presented in [10] an algorithm for robot 

cooperation in finding targets. The technique is similar to 

PSO but adapted to swarm robotics search processes. 

Another algorithm inspired by PSO was presented by 

Marques, Nunes and de Almeida in [11]. It seeks odor 

sources in a search space. In order to improve swarm 

performance, the robots will repulse each other in the 

absence of a chemical cue. 

In the experiment of Hereford, Siebold and Nichols 

[12], a swarm of robots used PSO to search for light 

spots in a room with obstacles. Individual robots are 

considered particles and broadcast information to the 

entire swarm. His experiment has the aforementioned 

downside of requiring a lot of communication, to 

maintain the global pest position of the swarm. 

A modified technique of glowworm swarm 

optimization (GSO) was presented by Zhang, Ma, and 

Miao [13], used for multiple odor source localization. It 

uses a global random search and a local search based on 

GSO. Once discovered, a source is marked as forbidden 

area so that it won't be located again. 
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In nature, ant colonies are known for their pheromone-

based navigation and migration techniques. Swarm 

robotics researchers used similar methods by simulating 

pheromones with the help of specific robot parts as 

emitters.  

Sperati, Triann, and Nolfi [14] made a study in which 

a robot swarm managed to explore the environment and 

create a navigational path between two key areas which 

were too far apart to be perceived by any one agent 

alone. The robots would continuously move along the 

path, interacting with their neighbors. The robots' 

behavior was controlled by a neural net. Therefore the 

swarm evolved to optimize the path, converging on the 

shortest distance. 

The third algorithm mentioned, glowworm swarm 

optimization (GSO), represents an optimization 

technique meant to simultaneously detect several 

optimum values from multimodal functions, which 

exhibit many local maximums. Initially, agents are 

randomly spread according to a uniform distribution, in 

the target function's space. Every agent carries a 

luminescence quantity called luciferin that encodes 

information about the function at his current location. 

Agents are metaphorically viewed as glowworms (firefly 

larvae) that glow with light, whose intensity is 

proportional to the associated luciferin. A worm sees as 

neighbors other worms situated in the local decision 

domain which has a greater luciferin value. The decision 

domain is adaptable and has an upper bound given by the 

circular distance of the sensor. Every worm selects a 

neighbor using a probabilistic mechanism and goes 

towards it. This results in every worm being attracted by 

the most powerful glow of its neighbors. These 

individual moves, based only on local information, allow 

the swarm to divide into disjoint subgroups and then 

gather at multiple optimums of multimodal functions. 

As described in Liu, Wang, Tan [15], a worm that has 

maximum luciferin value in a given iteration will be 

stationary. This property will ideally mean that the 

system will be in a deadlock if the maximum point is 

outside the convex hull of the glowworm positions. This 

results in the glowworms moving away from peaks. 

However, because the movement updates in steps of 

discrete values, each glowworm will move with a 

distance s towards its neighbor. When it gets close 

enough so that the distance between them is less than s, it 

will overtake the neighbor and swap the leader-follower 

positions. This particular feature is called the 

leapfrogging effect and is what allows the glowworms to 

actually reach the peak points on a gradient, even if the 

maximum lies outside the convex hull of their positions. 

Multiple glowworms will use this principle to perform an 

improved local search and converge on a maximum. 

Aside from the search issue, which is important in 

tracking objectives, another feature of major significance 

to swarm systems are formation and navigation. For the 

SURFINDER project, inspiration was drawn from the 

technique of boid flocking, presented by Craig Reynolds 

in 1987. Boids stand for birdoid objects – an abstract 

metaphor of birds. Initially, it was designed as a 

simulation and later a paper was presented at the 

SIGGRAPH 1987 computer graphics conference. The 

concept was described by Craig [16]. The motivation for 

the paper arose from avoiding manual and crude 

techniques to animate a group of bird-like elements with 

scripted paths. The premise is that a flock is the result of 

individual interactions. A resemblance to swarm methods 

can be noticed, where the fundamental idea is the same. 

The behavioral model that controls flight and flocking 

is based on the distributed self-organized systems model. 

Individual agents possess state and behavior, which can 

be encapsulated in objects ( a useful construct for 

practical implementations in object-oriented languages). 

Every instance of these objects requires a computational 

process to be able to run the behavioral program on the 

internal state. Objects along with necessary processes are 

known as actors. The actors represent virtual computers 

that communicate by exchanging messages. 

A fundamental part of the proposed model was the 

geometric capability of flying. The motion happens along 

a 3D curve. Although movement is rigid, the geometric 

model of the object could change shape during an 

animation, within its flight coordinates. 

In order to model the flock, there are three behaviors 

that need to be taken into account: avoiding collisions 

between neighboring members, matching the speed with 

neighboring members and centering the flock – the 

individuals' effort to keep proximity to neighboring 

members. Avoiding collisions and dynamic velocity 

adjustment are complementary influences: they allow 

simulated flock members to fly freely inside the flock 

without running into each other. Static collision 

avoidance is based on member's relative position and 

ignores velocity. On the other hand, velocity matching is 

based on speed only and ignores position. 

Flock centering determines the boid's tendency 

towards its center. Given that every member has a local 

perception of the world, the center is defined as the 

centroid of neighboring members. If the individual is 

located in the center of the flock, population density is 

homogenous in the neighborhood, therefore almost 

constant in all directions. In this case, the centroid of the 

neighboring members is identical to the center of the 

neighborhood, so flocking tendency towards the center is 

small. However, if the agent is situated at the edge of the 

flock, there will be neighboring members only on one 

side of him. The centroid of neighboring members is 

translated from neighborhood center to the body of the 

flock. This makes the flocking tendency higher, and the 

movement trajectory will be changed towards the flock 

center. 

The above three behaviors allow group separation, 

which can be a method of obstacle avoidance. The 

motion will be adapted to close members. Force field 
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model assumes a repulsion force field which is generated 

by the obstacle in the space and members are pushed 

away from the more they get closer to the obstacle. This 

model can produce good results, but it also has 

disadvantages: if a member comes from a direction 

which is the exact opposite of his motion, it will not turn, 

but will merely be slowed down. 

The robot control technique that is envisioned for the 

SURFINDER project is a variant of the flocking method 

described above. Each robot (agent) of the group will be 

coordinated by a resultant vector, calculated as the vector 

sum of all influence forces acting upon it. These forces of 

influence will determine the behavior of the member 

towards the group and the group as a whole. The forces 

will be weighted with dynamically adjustable parameters 

during the mission. Because the technique is modeled 

after the concepts presented by Reynolds in his work 

regarding flocking, there will be cohesion forces and 

repulsion forces, which will constitute the foundation of 

drone group movement without collision among 

members and keeping a steady minimum distance 

between each other. At the system level, drones can be 

controlled by setting goals or through a multi-phase 

strategy. In case a multi-phase strategy is used. Initially, 

there can be placed target position in perimeter search 

space, towards which the drones could maintain 

direction, and after acquiring signals from nearby, those 

initial positions could lose importance to new objectives, 

set by the drones. Initial points could be randomly 

uniform distributed inside the perimeter or sub-zones. If 

there are sub-zones involved, a suitable partition strategy 

needs to be used. After closing in on initial targets, 

drones could enter a secondary phase during which they 

make a zone surveillance so as to cover the whole region 

of interest in their search for signals. In this case, a 

strategy for surveillance behavior is needed. As signals 

are acquired, drones could move on to a new phase with 

a behavior suited for a more detailed search, or assistance 

with setting up an ad-hoc GSM network or other tasks. 

As an alternative to or in conjunction with a multi-

phase strategy, the drone swarm can be controlled by 

modifying the weights of the influence forces on the 

individuals. There can also be influences on the whole 

system. A proposed method is that of a food sources 

metaphor. Initially, some food sources can be set up by a 

human operator and drones can be pointed towards these 

virtual food sources. These targets decay and are 

replaced by new ones in surrounding area, creating a 

renewed interest in visiting other zones. Acquired signals 

can become virtual food sources that don't get depleted, 

to stabilize the drones around them. 

A fundamental principle, regardless of the techniques 

implemented, is controlling the system by means of 

influences acting upon it and not direct control of the 

drones. This will facilitate guiding the swarm and will 

abstract all the particular navigation details which could 

overwhelm a small number of human operators.  

III. CONCLUSION 

The purpose of the drones in the SURFINDER project 

is not limited to reconnaissance and victim localization. 

The system should be useful in as many moments of a 

rescue operation as possible. Therefore, on a higher level, 

there will be behaviors defined for multiple situations 

and goals. The generic capabilities of drones will be 

established, such as GSM network setup, survivor 

detection based on mobile phone signal, informing the 

base of environment status and other planned operations. 

On a lower level, simple and practical mechanisms need 

to be established in order to communicate between agents 

as well as with the operation headquarters, to sense the 

environment, to move to a target and other necessary 

mechanical actions. 
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